Cercle mathématique de Strasbourg, semaine 2025-09-23

1 Partie I : Cas familiers et premières observations

L'histoire raconte que le jeune Carl Friedrich Gauss a stupéfié son professeur en calculant la somme des entiers de 1 à 100 en quelques instants. Nous allons commencer par revisiter ce problème et les cas les plus connus.

Exercice 1 : La méthode de Gauss

Soit la somme $S_1(n) = 1 + 2 + \cdots + n$.

- 1. Écrire la somme $S_1(n)$ sur une ligne, puis sur une seconde ligne en ordre inverse.
- 2. En additionnant terme à terme les deux lignes, déduire l'expression bien connue :

$$S_1(n) = \frac{n(n+1)}{2}$$

Exercice 2 : La somme des carrés

La formule pour la somme des n premiers carrés est :

$$S_2(n) = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

- 1. Vérifier manuellement la validité de cette formule pour n=3.
- 2. Démontrer cette formule par récurrence pour tout entier $n \ge 1$.

Pour découvrir les formules des $S_k(n)$ sans les connaître à l'avance, on peut utiliser une astuce basée sur les identités remarquables et les sommes télescopiques.

Exercice 3: Retrouver la formule de $S_1(n)$

- 1. Pour un entier $i \geq 1$, développer et simplifier l'expression $(i+1)^2 i^2$.
- 2. On considère la somme $\sum_{i=1}^{n} ((i+1)^2 i^2)$.
 - (a) D'une part, en utilisant la question précédente, exprimer cette somme en fonction de $S_1(n)$ et n.
 - (b) D'autre part, montrer que cette somme est "télescopique" et qu'elle est égale à $(n+1)^2 1^2$.
- 3. En égalisant les deux expressions obtenues, retrouver la formule de $S_1(n)$.

Exercice 4: Établir la formule de $S_2(n)$ On souhaite maintenant trouver la formule de $S_2(n)$ en adaptant la méthode précédente.

- 1. Pour un entier $i \ge 1$, développer et simplifier l'expression $(i+1)^3 i^3$.
- 2. Écrire la somme $\sum_{i=1}^n ((i+1)^3 i^3)$ de deux manières différentes :
 - (a) En utilisant le résultat de la question précédente, en fonction de $S_2(n)$, $S_1(n)$ et n.
 - (b) En reconnaissant une somme télescopique.
- 3. En déduire une expression de $S_2(n)$ en fonction de n et de $S_1(n)$.

4. Substituer la formule de $S_1(n)$ et factoriser l'expression pour retrouver la formule :

$$S_2(n) = \frac{n(n+1)(2n+1)}{6}$$

Exercice 5: Découverte de la formule En vous inspirant de la méthode de l'Exercice 2, utiliser l'identité $(i+1)^4 - i^4$ pour trouver une expression de $S_3(n)$. Vous aurez besoin des formules pour $S_2(n)$ et $S_1(n)$.

Exercice 6 : Une identité remarquable

1. Montrer que la formule obtenue pour $S_3(n)$ peut s'écrire sous la forme :

$$S_3(n) = \left(\frac{n(n+1)}{2}\right)^2$$

2. Quelle relation remarquable existe-t-il entre la somme des n premiers cubes et la somme des n premiers entiers? Rédiger cette conclusion sous la forme d'une égalité entre $S_3(n)$ et $S_1(n)$.

Exercice 7 La somme des carrés $S_2(n)$ semble être un facteur dans les formules des sommes de puissances paires, et la somme des cubes $S_3(n)$ un facteur dans celles des puissances impaires.

On donne la formule pour la somme des puissances quatrièmes :

$$S_4(n) = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

- 1. Vérifier que l'on peut bien écrire $S_4(n) = S_2(n) \times Q(n)$, où Q(n) est un polynôme en n que l'on déterminera.
- 2. Le document mentionne la formule pour la somme des puissances cinquièmes :

$$S_5(n) = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

Montrer que $S_5(n)$ peut s'écrire comme le produit de $S_3(n)$ par un polynôme en n.

2 Partie II : Introduction aux polynômes de Bernoulli

Pour généraliser la recherche de $S_k(n)$ pour n'importe quel entier k, les mathématiciens ont introduit une suite de polynômes aux propriétés remarquables.

Définition: Les polynômes de Bernoulli

On définit la suite de polynômes (β_n) de la manière suivante :

- Le polynôme initial est $\beta_0(x) = 1$.
- Pour tout entier $n \ge 1$, les polynômes sont définis par les deux conditions :
 - 1. $\beta'_n(x) = n\beta_{n-1}(x)$ (Relation de dérivation)
 - 2. $\int_0^1 \beta_n(t)dt = 0$ (Condition de moyenne nulle)

Exercice 8 : Calcul des premiers polynômes de Bernoulli

En utilisant la définition ci-dessus, nous allons déterminer les premiers polynômes de la suite.

1. Calcul de $\beta_1(x)$:

- En utilisant la relation de dérivation, montrer que $\beta_1(x)$ est de la forme $x + C_1$, où C_1 est une constante.
- En utilisant la condition de moyenne nulle, calculer $\int_0^1 (t+C_1)dt$ et en déduire la valeur de C_1 .
- Conclure que $\beta_1(x) = x \frac{1}{2}$.

2. Calcul de $\beta_2(x)$:

- À partir de $\beta'_2(x) = 2\beta_1(x)$, déterminer une expression de $\beta_2(x)$ à une constante C_2 près.
- Calculer C_2 en utilisant $\int_0^1 \beta_2(t) dt = 0$.
- Montrer que $\beta_2(x) = x^2 x + \frac{1}{6}$.

3. Calcul de $\beta_3(x)$:

• Sur le même modèle, montrer que $\beta_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x$.

Exercice 9 : Les nombres de Bernoulli

Les nombres de Bernoulli, notés B_n , sont définis par $B_n = \beta_n(0)$.

- 1. À l'aide des résultats de l'exercice 3, donner les valeurs de B_0, B_1, B_2, B_3 .
- 2. Vérifier que pour n=2 et n=3, on a bien $\beta_n(0)=\beta_n(1)$.

3 Partie III : Le lien avec la somme des puissances

Le "miracle" des polynômes de Bernoulli réside dans une identité simple qui les relie directement à la sommation.

Propriété fondamentale (admise)

Pour tout entier $n \geq 1$, les polynômes de Bernoulli vérifient l'identité suivante :

$$\beta_n(x+1) - \beta_n(x) = nx^{n-1}$$

Exercice 10 : La formule générale de la somme

Fixons un entier $k \ge 1$. Notre but est de trouver une expression pour $S_k(n) = \sum_{i=1}^n i^k$.

- 1. En utilisant la propriété fondamentale ci-dessus avec n = k + 1, écrire la relation vérifiée par $\beta_{k+1}(x)$.
- 2. Appliquer cette relation pour les valeurs entières $x = 1, x = 2, \dots, x = n$.
- 3. En sommant ces n égalités, montrer que l'on obtient une somme télescopique à gauche.
- 4. En déduire la formule générale, parfois appelée formule de Faulhaber-Bernoulli :

$$S_k(n) = \sum_{i=1}^n i^k = \frac{\beta_{k+1}(n+1) - \beta_{k+1}(0)}{k+1}$$

Exercice 11 : Application de la formule générale

- 1. En utilisant la formule générale et l'expression de $\beta_2(x)$ trouvée à l'exercice 3, retrouver la formule de $S_1(n)$.
- 2. De même, en utilisant l'expression de $\beta_3(x)$, retrouver la formule de $S_2(n)$.

4 Partie IV : Pour aller plus loin - Propriétés de divisibilité

Les formules obtenues pour $S_k(n)$ cachent une structure remarquable.

Exercice 12: Un facteur commun pour les sommes de puissances impaires

Nous allons démontrer que pour tout entier $m \ge 1$, la somme $S_{2m+1}(n)$ est toujours divisible par $S_1(n)^2$. Rappelons que $S_1(n)^2 = \left(\frac{n(n+1)}{2}\right)^2$.

Soit le polynôme $P(x) = \beta_{2m+2}(x) - B_{2m+2}$. La formule de la somme s'écrit :

$$S_{2m+1}(n) = \frac{P(n+1)}{2m+2}$$

Pour que $S_{2m+1}(n)$ soit divisible par $n^2(n+1)^2$, il suffit de montrer que le polynôme P(x) est divisible par $(x-1)^2x^2$. Cela revient à montrer que 0 et 1 sont des racines de multiplicité au moins 2 de P(x).

- 1. Montrer que P(0) = 0 et P(1) = 0. (On pourra utiliser le fait que $\beta_n(0) = \beta_n(1)$ pour $n \ge 2$).
- 2. Calculer la dérivée P'(x).
- 3. Le document source nous informe que pour tout entier $j \ge 1$, $\beta_{2j+1}(0) = B_{2j+1} = 0$ et $\beta_{2j+1}(1) = 0$. En utilisant ce résultat, montrer que P'(0) = 0 et P'(1) = 0.
- 4. Conclure que P(x) est bien divisible par $x^2(x-1)^2$ et que, par conséquent, $S_{2m+1}(n)$ est divisible par $S_1(n)^2$.

Cas particulier : Pour m=1, on étudie $S_3(n)=1^3+2^3+\cdots+n^3$. Que nous apprend la conclusion précédente sur la relation entre $S_3(n)$ et $S_1(n)$?